「Deep Learning」タグアーカイブ

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(1) ~環境構築編~

AIや機械学習に興味がある方にとって、「画像認識」は最初の一歩として最適なテーマです。
今回は Python + TensorFlow + Keras を使って、手書き数字を自動判定するプログラムを実際に作ってみましょう。
有名な「MNIST(エムニスト)」という手書き数字データセットを使うことで、数十行のコードで高精度な認識が可能になります。


~公式版インストールから仮想環境・動作確認まで~


💻 環境例

項目バージョン・設定内容
OSWindows 11 Pro(64bit)
Python3.13.7(公式版インストーラ)
pip25.2
仮想環境venv(C:\python_env\env)
TensorFlow2.20.0
matplotlib3.10.6

🧩 ステップ①:公式Pythonのインストール

1️⃣ Python公式サイトへアクセス

👉 https://www.python.org/downloads/windows/

2️⃣ 最新の「Windows installer (64-bit)」をダウンロード

①Downloads → Windows を選択し、「Latest Python 3 Release – Python 3.13.7」をクリック

②画面下にある「Windows installer (64-bit)」をクリックしてダウンロード

3️⃣ インストーラ起動後の設定

以下のチェックを必ず確認してください。

Add python.exe to PATH
Use admin privileges when installing py.exe
➡ 「Customize installation」を選択して進む

4️⃣ Advanced Options の設定

  • ☑ Install Python 3.13 for all users

  • ☑ Add Python to environment variables

  • ☑ Precompile standard library

  • 📁 インストール先を以下に変更:

    C:\Python313

5️⃣ 「Install」をクリックして完了!


🧩 ステップ②:インストール確認

インストール完了後、コマンドプロンプトで以下を実行👇

✅ 出力例

🧩 ステップ③:仮想環境の作成と有効化

プロジェクト専用の仮想環境を作成して、ライブラリの競合を防ぎます。


有効化:

✅ 成功すると、プロンプトの先頭に (env) が表示されます

🧩 ステップ④:TensorFlowとmatplotlibをインストール

仮想環境が有効な状態で以下を実行👇


インストール後に確認:

✅ 出力例(抜粋)


🧩 ステップ⑤:動作確認

TensorFlowが正常に動作しているか確認します。


✅ 出力例:

※ oneDNN に関する警告が表示されても正常です。
性能最適化のための通知なので無視してOKです。


🧩 ステップ⑥:仮想環境の管理コマンドまとめ

操作内容コマンド
仮想環境を終了deactivate
仮想環境を再開cd C:\python_env && env\Scripts\activate
ライブラリ一覧確認pip list
仮想環境の削除rmdir /s /q C:\python_env

✅ まとめ

この手順で構築すれば、
Windows上で安定して動作する TensorFlow + Keras + matplotlib 環境が整います。
AI学習・画像認識・データ分析など、あらゆるPython開発に対応可能です💡

💬 次回予告

次の記事

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(2) ~実践サンプルコード編~

では、「TensorFlowとKerasで手書き数字を判定する」実践サンプルコード

を紹介します。
実際にMNISTデータセットを使って、
AIが数字を“読む”プロセスを一緒に学んでいきましょう。