🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(3) ~CNNによる高精度モデル編~

前回の記事

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(2) ~実践サンプルコード編~

では、全結合層(Dense Layer)のみを使った
シンプルなニューラルネットワークで手書き数字を認識しました。

今回はその続編として、
より高い精度を実現するために

  • 🌀 CNN(畳み込みニューラルネットワーク)

  • 🌊 Dropoutによる過学習防止

  • ⚙️ 学習率調整(Learning Rate Scheduling)

を導入した「高精度モデル版」を構築します。


🧩 動作環境(同シリーズ共通)

項目バージョン・設定内容
OSWindows 11 Pro(64bit)
Python3.13.7(公式版インストーラ)
pip25.2
仮想環境venv(C:\python_env\env)
TensorFlow2.20.0
matplotlib3.10.6


🧱 ステップ①:CNNを使ったモデル構築

CNNは画像認識に特化したネットワーク構造で、
人間の「目」と同じように特徴(輪郭・形・濃淡)を自動的に抽出します。


⚙️ ステップ②:学習率を調整して最適化

Adam オプティマイザの learning_rate を指定することで、
勾配更新のスピードを細かく制御できます。


📈 ステップ③:学習を実行

学習中の精度や損失の推移がターミナルに表示されます👇



🧾 ステップ④:テストデータで評価

CNNを導入したことで、精度は 約99%前後 に向上します🚀


🧠 ステップ⑤:予測結果の可視化


📊 ステップ⑥:精度の推移をグラフ化(オプション)

このグラフで、学習が過学習に陥っていないか確認できます。

💾 手順まとめ:ファイル保存〜実行まで

① ファイルを作成

任意のテキストエディタ(例:VSCode、メモ帳、サクラエディタなど)で
以下のコードをコピーして貼り付けてください。

ファイル名は:

mnist_cnn_high_accuracy.py

② コード内容(完全版)


③ 保存場所

わかりやすくするために、
これまでと同じフォルダ内(例:C:\python_env)に保存するのがおすすめです。

C:\python_env\mnist_cnn_high_accuracy.py

④ 実行手順

1️⃣ 仮想環境を有効化(重要):


2️⃣ スクリプトを実行:

⑤ 実行結果

  • 学習が進むと各 Epoch ごとの精度が表示される

  • 終了時に

    Test accuracy: 0.9935

    のような高精度結果が出る

  • その後、

    • AIが予測した数字画像(例:「7」)

    • 学習精度グラフ(train_acc / val_acc)
      が順に表示されます


⑥ 終了後

仮想環境を終了:


🚀 結果と考察

比較項目前回(Dense)今回(CNN+Dropout)考察
モデル構造全結合層のみ畳み込み+プーリングCNNが画像の空間特徴を直接学習でき、汎化性能が向上
エポック数510学習回数は増えるが精度向上に寄与
学習時間(目安)約5秒約20秒パラメータが増えるため計算時間は増加
精度(テスト)約97.6%約99.2%CNN導入で+1〜2ポイント改善
過学習対策なしDropout(0.5)Dropoutにより汎化が改善し、過学習を抑制

CNNを導入することで、特徴抽出の自動化が進み、
より安定した高精度の画像認識が可能になりました。


💡 応用ポイント

  • 🔹 BatchNormalization を追加するとさらに安定化

  • 🔹 データ拡張(ImageDataGenerator) で汎化性能アップ

  • 🔹 モデル保存model.save("mnist_cnn_model.h5")


✅ まとめ

本記事では、

CNN(畳み込みニューラルネットワーク)+Dropout+学習率調整
を導入して、手書き数字認識AIを高精度化しました。

精度は 約99% に到達し、実用的な画像認識モデルの基礎が完成です。

🔜 次回予告

「(4) 学習済みモデルを使って自分の手書き画像を判定する」

自分で描いた数字画像を読み込んで、
AIがそれを正しく識別できるか試してみましょう🖋️

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

email confirm*

post date*