「推論」タグアーカイブ

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(4) ~学習済みモデルで自作画像を認識~

前回の

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(3) ~CNNによる高精度モデル編~

までで、MNISTデータセットを使い高精度なCNNモデルを作成しました。
今回はその学習済みモデルを再利用し、自分で描いた手書き数字画像を実際に判定してみましょう。


ステップ①:学習済みモデルの保存

前回での学習コードに以下を追加して、モデルを保存しておきます。


これで C:\python_env\mnist_cnn_model.h5 が生成されます。


ステップ②:自作画像を準備する

1️⃣ 白背景に黒文字で「0〜9」の数字を描いた画像を用意
2️⃣ 画像サイズを 28×28ピクセル にリサイズ
3️⃣ ファイル形式は .png または .jpg でOK

(例)

C:\python_env\my_digit.png

※手書きペイントツールで描いてもOK。
できるだけ文字を中央に配置し、背景は白が理想です。


ステップ③:推論スクリプトを作成

ファイル名:

predict_my_digit.py

内容:


ステップ④:実行

仮想環境を有効化して、次のコマンドを実行:


ステップ⑤:結果と考察

項目内容
予測結果AIが自作の手書き数字を正しく認識し、予測結果が画面に表示される
処理時間数百ミリ秒程度で即時に判定が完了
注意点白背景×黒文字の前提で学習しているため、背景と文字が逆の場合は反転処理を削除
応用例手書き書類の数字抽出、郵便番号や伝票番号の自動読み取りなどに応用可能
考察CNNモデルにより自作データでも高い精度を維持。前処理(反転・正規化)が認識精度に大きく影響

💡 ワンポイント

もし背景が黒で文字が白の場合は、
次の行を削除してください:


✅ まとめ

これで「自分の描いた手書き数字」をAIが正しく認識できるようになりました。
この流れを応用すれば、より複雑な画像分類(例えば「猫と犬」や「手書き文字分類」)にも発展できます。