「AI入門」タグアーカイブ

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(4) ~学習済みモデルで自作画像を認識~

前回の

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(3) ~CNNによる高精度モデル編~

までで、MNISTデータセットを使い高精度なCNNモデルを作成しました。
今回はその学習済みモデルを再利用し、自分で描いた手書き数字画像を実際に判定してみましょう。


ステップ①:学習済みモデルの保存

前回での学習コードに以下を追加して、モデルを保存しておきます。


これで C:\python_env\mnist_cnn_model.h5 が生成されます。


ステップ②:自作画像を準備する

1️⃣ 白背景に黒文字で「0〜9」の数字を描いた画像を用意
2️⃣ 画像サイズを 28×28ピクセル にリサイズ
3️⃣ ファイル形式は .png または .jpg でOK

(例)

C:\python_env\my_digit.png

※手書きペイントツールで描いてもOK。
できるだけ文字を中央に配置し、背景は白が理想です。


ステップ③:推論スクリプトを作成

ファイル名:

predict_my_digit.py

内容:


ステップ④:実行

仮想環境を有効化して、次のコマンドを実行:


ステップ⑤:結果と考察

項目内容
予測結果AIが自作の手書き数字を正しく認識し、予測結果が画面に表示される
処理時間数百ミリ秒程度で即時に判定が完了
注意点白背景×黒文字の前提で学習しているため、背景と文字が逆の場合は反転処理を削除
応用例手書き書類の数字抽出、郵便番号や伝票番号の自動読み取りなどに応用可能
考察CNNモデルにより自作データでも高い精度を維持。前処理(反転・正規化)が認識精度に大きく影響

💡 ワンポイント

もし背景が黒で文字が白の場合は、
次の行を削除してください:


✅ まとめ

これで「自分の描いた手書き数字」をAIが正しく認識できるようになりました。
この流れを応用すれば、より複雑な画像分類(例えば「猫と犬」や「手書き文字分類」)にも発展できます。

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(1) ~環境構築編~

AIや機械学習に興味がある方にとって、「画像認識」は最初の一歩として最適なテーマです。
今回は Python + TensorFlow + Keras を使って、手書き数字を自動判定するプログラムを実際に作ってみましょう。
有名な「MNIST(エムニスト)」という手書き数字データセットを使うことで、数十行のコードで高精度な認識が可能になります。


~公式版インストールから仮想環境・動作確認まで~


💻 環境例

項目バージョン・設定内容
OSWindows 11 Pro(64bit)
Python3.13.7(公式版インストーラ)
pip25.2
仮想環境venv(C:\python_env\env)
TensorFlow2.20.0
matplotlib3.10.6

🧩 ステップ①:公式Pythonのインストール

1️⃣ Python公式サイトへアクセス

👉 https://www.python.org/downloads/windows/

2️⃣ 最新の「Windows installer (64-bit)」をダウンロード

①Downloads → Windows を選択し、「Latest Python 3 Release – Python 3.13.7」をクリック

②画面下にある「Windows installer (64-bit)」をクリックしてダウンロード

3️⃣ インストーラ起動後の設定

以下のチェックを必ず確認してください。

Add python.exe to PATH
Use admin privileges when installing py.exe
➡ 「Customize installation」を選択して進む

4️⃣ Advanced Options の設定

  • ☑ Install Python 3.13 for all users

  • ☑ Add Python to environment variables

  • ☑ Precompile standard library

  • 📁 インストール先を以下に変更:

    C:\Python313

5️⃣ 「Install」をクリックして完了!


🧩 ステップ②:インストール確認

インストール完了後、コマンドプロンプトで以下を実行👇

✅ 出力例

🧩 ステップ③:仮想環境の作成と有効化

プロジェクト専用の仮想環境を作成して、ライブラリの競合を防ぎます。


有効化:

✅ 成功すると、プロンプトの先頭に (env) が表示されます

🧩 ステップ④:TensorFlowとmatplotlibをインストール

仮想環境が有効な状態で以下を実行👇


インストール後に確認:

✅ 出力例(抜粋)


🧩 ステップ⑤:動作確認

TensorFlowが正常に動作しているか確認します。


✅ 出力例:

※ oneDNN に関する警告が表示されても正常です。
性能最適化のための通知なので無視してOKです。


🧩 ステップ⑥:仮想環境の管理コマンドまとめ

操作内容コマンド
仮想環境を終了deactivate
仮想環境を再開cd C:\python_env && env\Scripts\activate
ライブラリ一覧確認pip list
仮想環境の削除rmdir /s /q C:\python_env

✅ まとめ

この手順で構築すれば、
Windows上で安定して動作する TensorFlow + Keras + matplotlib 環境が整います。
AI学習・画像認識・データ分析など、あらゆるPython開発に対応可能です💡

💬 次回予告

次の記事

🧠 Pythonで学ぶ画像認識入門:TensorFlowとKerasで手書き数字を判定する方法(2) ~実践サンプルコード編~

では、「TensorFlowとKerasで手書き数字を判定する」実践サンプルコード

を紹介します。
実際にMNISTデータセットを使って、
AIが数字を“読む”プロセスを一緒に学んでいきましょう。